Role of K(+) channel expression in polyamine-dependent intestinal epithelial cell migration.

نویسندگان

  • J Y Wang
  • J Wang
  • V A Golovina
  • L Li
  • O Platoshyn
  • J X Yuan
چکیده

Polyamines are essential for cell migration during early mucosal restitution after wounding in the gastrointestinal tract. Activity of voltage-gated K(+) channels (Kv) controls membrane potential (E(m)) that regulates cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)) by governing the driving force for Ca(2+) influx. This study determined whether polyamines are required for the stimulation of cell migration by altering K(+) channel gene expression, E(m), and [Ca(2+)](cyt) in intestinal epithelial cells (IEC-6). The specific inhibitor of polyamine synthesis, alpha-difluoromethylornithine (DFMO, 5 mM), depleted cellular polyamines (putrescine, spermidine, and spermine), selectively inhibited Kv1.1 channel (a delayed-rectifier Kv channel) expression, and resulted in membrane depolarization. Because IEC-6 cells did not express voltage-gated Ca(2+) channels, the depolarized E(m) in DFMO-treated cells decreased [Ca(2+)](cyt) as a result of reduced driving force for Ca(2+) influx through capacitative Ca(2+) entry. Migration was reduced by 80% in the polyamine-deficient cells. Exogenous spermidine not only reversed the effects of DFMO on Kv1.1 channel expression, E(m), and [Ca(2+)](cyt) but also restored cell migration to normal. Removal of extracellular Ca(2+) or blockade of Kv channels (by 4-aminopyridine, 1-5 mM) significantly inhibited normal cell migration and prevented the restoration of cell migration by exogenous spermidine in polyamine-deficient cells. These results suggest that polyamine-dependent intestinal epithelial cell migration may be due partially to an increase of Kv1.1 channel expression. The subsequent membrane hyperpolarization raises [Ca(2+)](cyt) by increasing the driving force (the electrochemical gradient) for Ca(2+) influx and thus stimulates cell migration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+-RhoA signaling pathway required for polyamine-dependent intestinal epithelial cell migration.

Expression of voltage-gated K(+) (Kv) channel genes is regulated by polyamines in intestinal epithelial cells (IEC-6 line), and Kv channel activity is involved in the regulation of cell migration during early restitution by controlling membrane potential (E(m)) and cytosolic free Ca2+ concentration ([Ca2+](cyt)). This study tests the hypothesis that RhoA of small GTPases is a downstream target ...

متن کامل

Activation of K(+) channels and increased migration of differentiated intestinal epithelial cells after wounding.

Early mucosal restitution occurs by epithelial cell migration to reseal superficial wounds after injury. Differentiated intestinal epithelial cells induced by forced expression of the Cdx2 gene migrate over the wounded edge much faster than undifferentiated parental cells in an in vitro model. This study determined whether these differentiated intestinal epithelial cells exhibit increased migra...

متن کامل

RhoA enhances store-operated Ca entry and intestinal epithelial restitution by interacting with TRPC1 after wounding

Chung HK, Rathor N, Wang SR, Wang JY, Rao JN. RhoA enhances store-operated Ca entry and intestinal epithelial restitution by interacting with TRPC1 after wounding. Am J Physiol Gastrointest Liver Physiol 309: G759–G767, 2015. First published September 3, 2015; doi:10.1152/ajpgi.00185.2015.—Early mucosal restitution occurs as a consequence of epithelial cell migration to resealing of superficial...

متن کامل

Polyamines regulate -catenin tyrosine phosphorylation via Ca during intestinal epithelial cell migration

Guo, Xin, Jaladanki N. Rao, Lan Liu, Mort Rizvi, Douglas J. Turner, and Jian-Ying Wang. Polyamines regulate -catenin tyrosine phosphorylation via Ca2 during intestinal epithelial cell migration. Am J Physiol Cell Physiol 283: C722–C734, 2002. First published April 24, 2002; 10.1152/ajpcell.00054.2002.—Polyamines are essential for early mucosal restitution that occurs by epithelial cell migratio...

متن کامل

Activation of Dbl restores migration in polyamine-depleted intestinal epithelial cells via Rho-GTPases.

Integrin binding to the extracellular matrix (ECM) activated Rho GTPases, Src, and focal adhesion kinase in intestinal epithelial cells (IEC)-6. Polyamine depletion inhibited activities of Rac1, RhoA, and Cdc42 and thereby migration. However, constitutively active (CA) Rac1 expression abolished the inhibitory effect of polyamine depletion, indicating that polyamines are involved in a process up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 278 2  شماره 

صفحات  -

تاریخ انتشار 2000